
 How to
Supercharge Your
API Adoption
Learn:

 Why developer experience can make or break your API

initiative

 Seven ways that SDKs can help you accelerate API

adoption while reducing support cost

 Your options for creating SDKs

APIs succeed — or fail —

based on how developer-friendly they are

1

We’re so used to the magic of APIs that sometimes we don’t realize that integrating with
an API is often very manual, time-consuming, and error-prone for API consumers.

Here’s a typical process for integrating with an API:

Read the API documentation and find the right API calls (or combination of calls)

2
For the relevant API

endpoints, understand the
expected request and
response data formats

3
Write code to form and send

HTTP requests per the
documentation

4
Write code to parse the
responses into the right

data structures

5
Anticipate all the errors that
might occur, and then write

code to handle them

6
Write code to manage

authentication, retries, and
rate limiting

7
Test and rewrite code for

all relevant API calls

02 How to Supercharge Your API Adoption

Overall, this approach tends to resemble “trial and error”. API users end up
frustrated and may give up. “Time to 200” is measured in days, weeks or even
months

How have companies like Stripe, Plaid, Segment, and Twilio managed to thrive?

They all offer client SDKs that make it easy to integrate with their APIs.

How do the most successful API
companies become developer-friendly?

03 How to Supercharge Your API Adoption

“Server data makes up 25% of our total API traffic.
Because our server libraries perform batching and
validation automatically, we see customers almost
always preferring to send data from our server
libraries rather than directly to the HTTP API. 82%
of total server traffic originates from Segment-
supported server libraries.”

“Server-side SDKs (or Server-side libraries) make it
easy for you to use Twilio’s REST APIs, generate
TwiML, and perform other common server-side
programming tasks. These SDKs are available in a
variety of popular server-side programming
languages.”

“Stripe’s Server-side helper libraries reduce the
amount of work required to use Stripe’s REST APIs,
starting with reducing the boilerplate code you
have to write. [To the right] are the installation
instructions for these libraries in a variety of
popular server-side programming languages.”

04 How to Supercharge Your API Adoption

SDKs provide a far
superior developer
experience

Faster development

SDKs provide pre-built functions that help developers

accomplish tasks quickly. For example, an SDK for an

e-commerce API might include a pre-built function

and parameters for placing an order.

More intuitive experience

Users get a much better in-IDE experience thanks to

auto-completion.

Broader feature adoption

Because the experience of integrating with an SDK

can be as simple as calling an SDK method,

developers are much more likely to use a wider set of

features.

Standardized data and type definitions

SDKs can ensure that data returned by an API is

handled in a standard and recommended manner.

More robust integrations

SDKs can ensure object type safety. This can

dramatically reduce the chance of bugs.

Breaking change mitigation

When an API introduces breaking changes, the SDK

can in some cases be updated to accommodate those

changes “under-the-hood” – while maintaining a

consistent interface for the developers.

Streamlined documentation

SDK docs focus on specific outcomes and abstract

away many low-level details. This makes them more

usable, easier to understand, and ultimately more

effective.

05 How to Supercharge Your API Adoption

Integrating to an API with
and without an SDK

This is an example of what integrating with an e-commerce API, to place an order for a
new customer, might look like without an SDK:

Create the right header
object

Anticipate errors and the
associated HTTP status
codes, interpret error
messages, handle
robustly

More error handling

Understand the
customer data model
and encode data
correctly (here: JSON)

Understand and create
the shape / types of all
required parameters

Understand each
endpoint’s structure and
required headers. Handle
async operations
elegantly

The API consumer needs to construct all this code themselve
 From reading API docs to figure out which APIs should be calle
 To understanding what the response data structures should look like and

which data needs to be extracte
 And how to handle auth, what error cases might arise and how to handle

them…

06 How to Supercharge Your API Adoption

Don’t forget to handle
more errors!

Finally... place the order

Understand order data
model and construct
appropriate object.
Manage dependencies
between APIs i.e. ensure
successful customer and
product information is
fetched

Integrating to an API with
and without an SDK [cont’d]

07 How to Supercharge Your API Adoption

SDK integrations are much
friendlier to your users

Now here’s the SDK version of this code:

Notice how much simpler and concise it is? These much shorter, standardized code
blocks can be shared with every API consumer, minimizing the work required to
integrate with the API.

Authentication is handled automatically with the developer just needing to copy in their
key. Pre-built functions mean the developer doesn’t need to parse through pages of API
docs to stitch together the required calls and associated data extraction themselves.
Error handling and retries are built-in.

Overall, a far easier and superior experience.

08 How to Supercharge Your API Adoption

How can you create SDKs and improve
your developer experience?

Create your own SDKs

Best for those with spare engineering resources, and where ultimate control over every
aspect of the SDK is paramount.

Pros: Cons:

 Maximum, fine-grained control: since

the SDKs are built by hand, they can be

completely customized

 Roadmap sprawl: Building core

product is hard enough. Adding SDKs

creates an explosion of work that has

to be prioritized and maintained. This

can pulls engineering focus and

velocity away from key differentiator

 Organizational overhead: you’ll need a

strong release process — every time

the API changes, you must ensure the

SDK is versioned, updated, re-

publishe

 Very expensive to create and

maintain: writing SDKs requires

engineering time. Don’t forget that

SDKs get bugs too. You’ll also need to

write docs for your SDKs, and may

need PM resources to help prioritize /

triage SDK feature

 Need to hire experts in every

supported language: this can add up

quickly if you want to support multiple

languages. And these languages may

not be used elsewhere in your core

produc

 Maintenance burden: oftentimes,

SDKs fall into disrepair when the

original maintainer of the SDK leaves

the company

-

Use open-source generators

Best for hobbyists or those content to hack around rough edges. And where language
idiomaticness is not a top concern.

-
Cons:

 Code quality: SDKs are an extension of

your product. A Go SDK for your API

should look and feel idiomatic to a Go

developer — likewise for Python, Ruby,

C#, PHP, etc. The OpenAPI generator

code can be noticeably uneven here,

and you may need to write your own

modifications

 Bugs / Lack of Support: While the

OpenAPI generator has a strong and

vibrant community of maintainers, be

aware that there are over 3.6K open

issues today — and no clear

prioritization or timeline on fixes

 Hidden setup and maintenance

costs: Be prepared to dedicate

significant engineering time to

integrate the OpenAPI generator into

an automated SDK creation workflow,

and to mitigate some of the issues

noted above.

09 How to Supercharge Your API Adoption

Pros:

 Lower upfront cost: no commercial

license to pay, and apparently lower

engineering cost to create SDK

 Can embed into an automated

workflow: with the right tooling around

the open-source generators, SDKs can

be automatically re-generated

whenever the API spec changes

10 How to Supercharge Your API Adoption

Use Speakeasy

Best for companies that want a production-ready solution today, with minimal setup and
maintenance cost.

Pros:

 Offer SDKs today: SDKs can be

created and published in just a few

minute

 Idiomatic, rich, type safe SDKs: Users

love our SDKs for their language

idiomaticness and “batteries-included”

features like retries, pagination, and

authentication. Type safety minimizes

integration errors

 Fully managed workflow: Speakeasy

takes care of the entire SDK workflow

to save you significant time. We

validate your OpenAPI spec, use AI to

suggest fixes, create SDKs, and

publish to package managers

 Always up to date: We automatically

generate SDKs every time your spec

changes - no extra work required

 Fully supported: Speakeasy handles

bugs and feature requests so your

engineering team doesn’t have t

 Customizable code output: control

SDK code output via Speakeasy

extensions in your spe

 Standards-compatible: Speakeasy

works with OpenAPI and JSON

schema -- and has been battle-tested

on over 4,000 API

 Generated SDKs are yours to keep:

we don’t own the SDKs -- you do.

Cons:

 Not 100% customizable: Can’t change

every aspect of SDK code

-

 Book a meeting, email us, or join our

public Slack toda

 Read customer case studies, docs, and

more at www.speakeasyapi.dev

Want to learn more?

https://calendly.com/yu-simon/30min
mailto:simon@speakeasyapi.dev
https://join.slack.com/t/speakeasy-dev/shared_invite/zt-1wmeq2783-vHHvJasnQ0PJ~PBSD8VsOQ
https://join.slack.com/t/speakeasy-dev/shared_invite/zt-1wmeq2783-vHHvJasnQ0PJ~PBSD8VsOQ
https://www.speakeasyapi.dev

